Review Session

Ricky Truong

Disclaimer

- This was designed to focus on reviewing important concepts, so there won't be many "practice problems"
 - There's also no way I can summarize an entire semester in an hour!
 - All mistakes in this slideshow are entirely my own
- A Practice Session will be held by Jude tomorrow (Thu, 12/05 from 1:30-3:30 PM in SC Hall E)
 - Hopefully, these two sessions will be complementary
- I do not know what the exam will look like

Big Ideas from STAT 100

Data Visualization

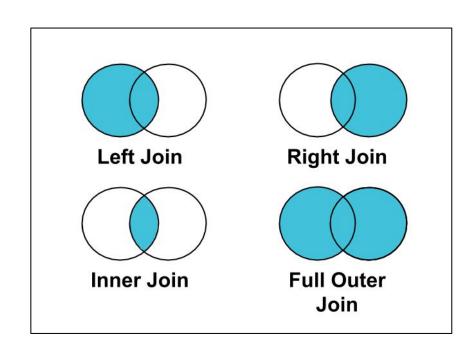
- We begin the course with **data visualization** (i.e., making graphs)
- We use the <u>grammar of graphics</u> as vocabulary to describe graphs
- Depending on our **variable(s)**, we need to know <u>when to choose the right graph</u>

Data Wrangling

- As our data is often messy, **data wrangling** (i.e., cleaning) is a recurring topic
- Understand the <u>different ways to handle missing values</u>
- Understand the <u>important wrangling functions</u>, which is best shown by examples
 - The really big ones are mutate() and summarize()
 - By no means is this an exhaustive list! Consider creating your own (if you haven't already)

Data Joins

- Data joins are used to join datasets via a key (variable to link the 2 datasets)
 - The 4 types are left join, right join, inner join, and full join
- This might show up, but I doubt it'll be a big part
 - To be safe, I suggest having some notes to reference



Left Join

- left_join(houses, students,
 join_by("name" == "house"))
- Combine 2 datasets via key, keeping all original observations from LEFT-HAND dataset while adding matching observations from RIGHT-HAND dataset

```
students
               id
                           house sleep
                   conc
           1 001
                    CPB Winthrop
                           Pfoho
                   Stat Winthrop
                           Pfoho
                        1930 River East
                        1970 River East
                                           after left_join()
no match
but
       left_join(houses, students,
cro m
                 join_by("name" == "house"))
                                          id conc sleep
                name built
                                   area
             Dunster 1930 River East <NA> <NA>
                                                      NA
          2 Winthrop 1931 River West
            Winthrop
                       1931 River West
                       1931 River West
                                         006 Stat
             Currier
                       1970
                                   Quad
                                         002 HDRB
                       1970 River East
                                         004 Econ
              Mather
```

Inner Join

- inner_join(houses, students, join_by("name" == "house"))
- Combine 2 datasets via key, keeping only matching observations between BOTH datasets (most constrained)

```
students
       id
                   house sleep
            conc
    1 001
             CPB Winthrop
      002
            HDRB
      003
                   Mather
          Psych
                   Pfoho
           Stat Winthrop
                   Pfoho
           name built
                1930 River East
                1931 River
                1970
         Mather
                1970 River East
inner join(houses, students,
           join by("name" == "house"))
##
         name built
                           area id conc sleep
               1931 River West 001 CPB
     Winthrop
## 2 Winthrop
               1931 River West 003 Stat
     Winthrop
               1931 River West 006 Stat
               1970
                           Quad 002 HDRB
               1970 River East 004 Econ
       Mather
```

Full Join

- full_join(houses, students, join_by("name" == "house"))
- Combine 2 datasets via key, keeping all observations between BOTH datasets and putting N/A if an observation didn't have corresponding value for a variable (most expansive)

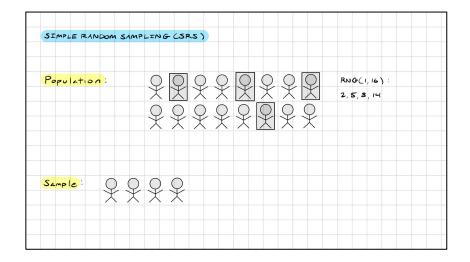
```
students
         001
                CPB Winthrop
         002
               HDRB
                        Pfoho
         006
               Stat Winthrop
              name built
                                area
                    1970
                    1970 River East
    full_join(houses, students,
               join by("name" == "house"))
                                           conc sleep
          Dunster
                    1930 River East
                                            <NA>
                                                    NA
       2 Winthrop
                    1931 River West
                                             CPB
       3 Winthrop
                    1931 River West
                                            Stat
## 4 Winthrop
                    1931 River West
                                      006
                                            Stat
           Currier
                    1970
                                      002
                                           HDRB
                                Quad
            Mather
                    1970 River East
                                      004
                                           Econ
             Pfoho
                                < NA >
                                      005 Psvch
             Pfoho
                                <NA>
                                      007
                                              IB
  no metales, but still added
```

Four Sampling Methods

- There are four main methods for **random sampling**
 - Simple random sampling
 - Systematic sampling
 - Cluster sampling
 - Stratified sampling
- Again, this might show up, but it most likely won't be a big part of the exam
 - I'll go over the next 4 slides quickly, but on your own time (or during the exam), you can read them more carefully

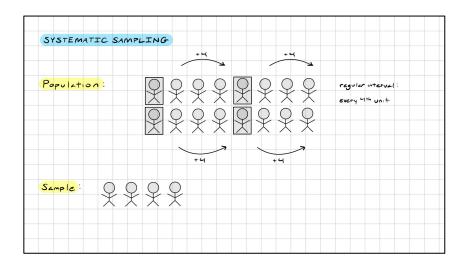
Simple Random Sampling (SRS)

- Simple random sampling: Every unit has an equal chance of being selected via random mechanism (all units must be listed out in a sampling frame)
 - Ex: To determine smartphone usage within Harvard students, number every student (HUID) and then draw random numbers to determine which ones to sample



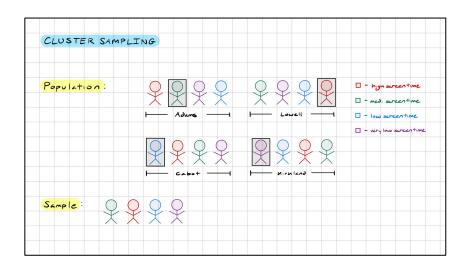
Systematic Sampling

- **Systematic sampling**: Starting point is randomly chosen, and then units are sampled at a **regular interval**
 - Ex: To determine smartphone usage within Harvard students, number every student (HUID) and then sample every fourth student



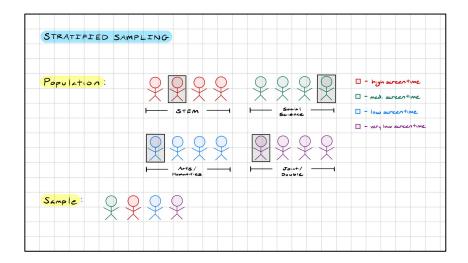
Cluster Sampling

- Cluster sampling: Divide population into homogeneous groups/clusters take a random sample within SOME of the clusters (to be chosen randomly)
 - Ex: To determine smartphone usage within Harvard students, sample students within four randomly-selected houses
 - Here, houses should be homogeneous (in terms of screen time) because houses are randomly assigned



Stratified Random Sampling

- Stratified random sampling:
 Divide population into
 heterogeneous groups/strata
 and take a random sample
 within EVERY stratum
 - Ex: To determine smartphone usage within Harvard students, sample students within each concentration
 - Here, concentrations should be heterogeneous (in terms of screen time) because STEM fields require more technology

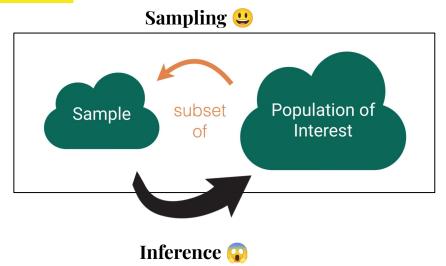


Recapping Our Probability Toolkit

- **Union**: $P(A \cup B) = P(A) + P(B) P(A \cap B)$
 - For **disjoint** events, $P(A \cup B) = P(A) + P(B)$ because $P(A \cap B) = o$
- Intersection: $P(A \cap B) = P(A) P(B \mid A) = P(B) P(A \mid B)$
 - For **independent** events, $P(A \cap B) = P(A) P(B)$ because $P(A \mid B) = P(A)$
- Complement Rule: $P(A) = 1 P(A^C)$, $P(A \mid B) = 1 P(A^C \mid B)$
 - Use when you see "at least" (e.g., "Find the probability of rolling a 5+ at least once in 3 rolls")
- **Def. of Conditional Probability**: $P(A \mid B) = P(A \cap B) / P(B)$
- **Bayes' Rule**: P(A | B) = P(B | A) P(A) / P(B)
- **LOTP**: $P(A) = P(A \mid B) P(B) + P(A \mid B^{C}) P(B^{C})$
 - Use for **wishful thinking** (e.g., "I really wish I knew which factory the cone came from")
- In general with probability, **start by defining events**

What Is Inference and Why Do We Care?

- With inference, we go from sample to population
 - Recall the difficulty of obtaining a census
- We have data from a sample and are interested in concluding something about the population
 - Confidence intervals estimate the parameter
 - Hypotheses test a certain
 "conjecture" about the parameter



Parameter vs. Statistic

Population parameter:

- Typically **unknown** (what we're interested in finding)
- For population proportion, it's denoted as p
 - This is for binary categorical variables
- Ex: Out of all 67 million viewers of the debate, how many believed Harris won? I don't know!

Sample statistic:

- **Known**/calculated from the **sample**
- For **sample proportion**, it's denoted as **p**
- Ex: From my (random) sample of 600 viewers, how many believed Harris won? Let's say it was 300, so $\hat{p} = 0.5$
- A **sample statistic** is a **point estimate** of the **population parameter** (i.e., our best guess, but we could be wrong)

Examples of Parameters and Statistics

	Response Variable		Numeric Quantity	Sample Statistic	Population Parameter
1 variable	Numerical		Mean	$\bar{\mathbf{x}}$	μ
	Categorical (Binary)		Proportion	p̂	p
	Response variable	Explanatory Variable	Numeric Quantity	Sample Statistic	Population Parameter
2 variables	Numerical	Categorical (Binary)	Difference in Means	$\bar{x}_1 - \bar{x}_2$	μ_1 - μ_2
	Categorical (Binary)	Categorical (Binary)	Difference in Proportions	p̂ ₁ - p̂ ₂	p ₁ - p ₂
	Numerical	Numerical	Correlation	r	ρ

If I want to see if Harvard students get less sleep than other college students, what should my hypotheses be (in terms of pop. parameters)?

Question:

If I want to see if Harvard students get less sleep than other college students, what should my hypotheses be (in terms of pop. parameters)? We have a binary categorical explanatory variable (Harvard or not) and numerical response variable (hours of sleep). This is a difference of means.

 $\mathbf{H_o}$: μ_{Harvard} - μ_{Other} = 0 (Harvard students get same amount of sleep)

 $\mathbf{H_A}$: μ_{Harvard} - μ_{Other} < 0 (Harvard students get less sleep)

A (Brief) Rundown on Hypothesis Testing

- <u>Test statistic</u>: Numerical summary of the sample data (often, but not always, equal to our observed sample statistic)
- Null hypothesis (H_o): World where research conjecture is false ("no change, status quo")
 - Null distribution is sampling distribution of test statistic assuming null hypothesis is true
- Alternative hypothesis (H_A): World where research conjecture is true
 - Alt. distribution is sampling distribution of test statistic assuming alt. hypothesis is true
- P-value: Probability of getting the observed test statistic OR MORE
 EXTREME if null hypothesis is true, represented by area under curve of null distribution

Essentials of Hypothesis Testing

- **Step 1**: State **hypotheses** (in terms of **population parameter**)
 - Null hypothesis posits the coin is normal. Alternative hypothesis argues it's rigged. H_0 : p = 0.5, H_A : p > 0.5
- Step 2: Specify a significance level, α (usually $\alpha = 0.05$)
- **Step 3**: Generate **null distribution**
 - If I were to repeatedly sample under the null hypothesis (assuming the coin has a normal 50% chance of heads), what would my sampling distribution look like?
- **Step 4**: Compute **observed test statistic** and **compute p-value**
 - Let's say, with n = 50, I observe 30 heads, so $\hat{p} = 0.6$. Under our null distribution, this has a p-value of 0.103.
- **Step 5**: Draw conclusions **in the context of the problem**
 - The probability of seeing 30 or more heads when flipping a fair coin 50 times is equal to 0.103. Since our p-value is high (0.103 > 0.05), we fail to reject the null hypothesis. There is little evidence the coin is rigged.

The Confidence Interval "Formula"

- "We are {confidence level}% confident that the true {population parameter} lies between {lower bound} and {upper bound}."

The P-Value "Formula"

- "If {null hypothesis} were true, then the probability of observing {test statistic} or {more extreme} would be {p-value}."
- "Because {p-value} is a {high/low} probability compared to {alpha level}, we reject {reject/fail to reject} the null hypothesis."

If I observe a difference of means of -2.7 hours (and a p-value of 0.003), what is an interpretation of the p-value and a conclusion? Assume $\alpha = 5\%$.

Question:

If I observe a difference of means of -2.7 hours (and a p-value of 0.003), what is an interpretation of the p-value and a conclusion? Assume $\alpha = 5\%$.

Using the p-value formula...

If there was no difference in mean hours of sleep between Harvard and non-Harvard students, then the probability of observing our test statistic, a difference of -2.7 hours, or less would be 0.3%.

Because 0.3% is a **low** probability (0.3% < 5%), we **reject** the null hypothesis.

Statistical Power

- There are 4 potential outcomes of a **hypothesis test** (shown below), depending on what we do and what's actually true
- **α** Probability of Type I Error (rejecting H_o when it's true)
- **β** Probability of Type II Error (failing to reject H_o when H_A is true)
 - As α decreases, β increases (but they DON'T add up to 1)
- **Power**: Probability of rejecting H_o when H_A is true (best outcome)
 - Power = 1β

	We Reject H _o	We Fail to Reject H _o
H _o is true	Type I Error	Correct Decision 🙂
H _A is true	Correct Decision 😁	Type II Error

If we reject the null hypothesis, is it possible we committed a Type I Error? A Type II Error?

Question:

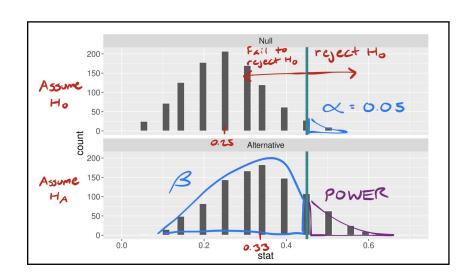
If we reject the null hypothesis, is it possible we committed a Type I Error? A Type II Error?

I remember Type I Error as a "delusional scientist" and Type II Error as a "missed opportunity."

If we reject the null hypothesis, there's a possibility we committed a Type I Error but no possibility we committed a Type II Error (by definition, this would require FAILING to reject the null hypothesis).

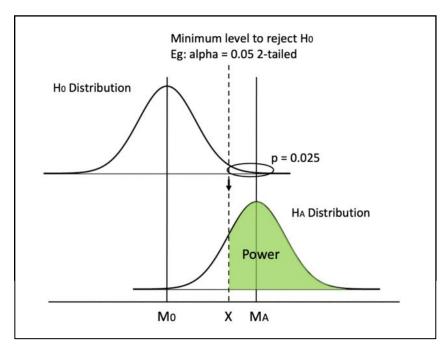
Intuition behind Power

- **Power**: Assuming **H**_A, what is the probability we reject **H**_o?
 - Given H_A is true, we look at the alternative distribution (which, now, is the true state of the world)
 - The **alpha level** is the probability of rejecting **H**_o in the **null distribution**
 - The critical region (to the right of α) is where we reject H₀
 - Thus, in the alternative distribution, the region to the right of the alpha level is power



How to Increase Power: Increase Alpha

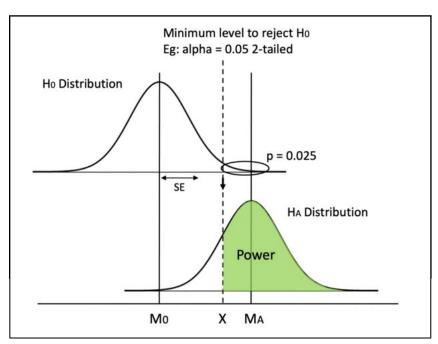
- This makes it easier to reject **H**₀
- Also, this "shifts" the critical line to the left, leading to more area in the "power region" of the alternative distribution
- Intuitively, we now have a higher probability of rejecting H_o, and power is probability of rejecting H_o when H_A is true



https://towardsdatascience.com/5-ways-to-increase-statistical-power-377cooddo214

How to Increase Power: Increase Sample Size

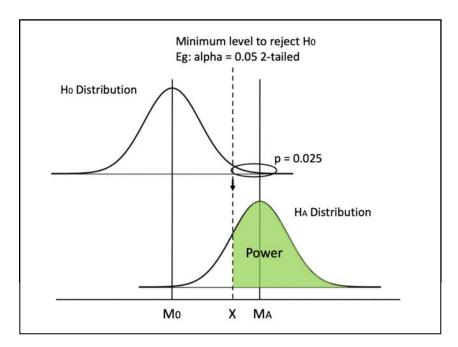
This decreases spread of histograms, leading to less overlap between null distribution and alternative distribution



https://towardsdatascience.com/5-ways-to-increase-statistical-power-377cooddo214

How to Increase Power: Increase Effect Size

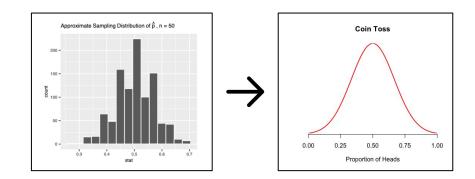
- Effect Size: Difference between true value of parameter and null value
- This makes it easier for us to notice a difference
- Also, this "shifts" the center of the alternative distribution to the right, leading to more area in the "power region"



https://towardsdatascience.com/5-ways-to-increase-statistical-power-377cooddo214

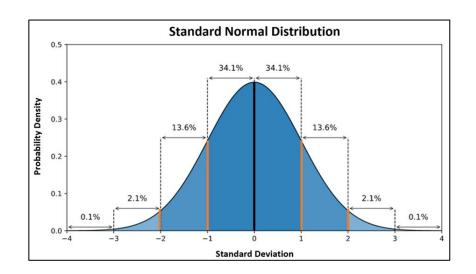
Simulation-Based to Theory-Based Inference

- When the <u>assumptions of CLT</u> are met, we can recast our **sample statistics** as **random variables** and conduct **theory based-inference**
 - Before, we **simulated** our **null dist.**
 - Now, we use known distributions (e.g., **normal dist.**) as our **null dist.**
- The <u>code</u> changes, but the interpretation is (mostly) same



Standardization: Z-Score, T-Score

- Before, we used our (observed) sample statistic as our test statistic
 - "The prob. we get our observed test stat. of 75% heads (or more extreme) is..."
- We can use **z-score** (for normal dist.) and *t-score* (for *t*-dist.), which are standardized versions of the sample stat.
 - "The prob. we get a z-score of 2.4 (or more extreme) is..."
- They measure how many SDs the sample stat. is away from its mean
 - z ~ N(o, 1), and the standard normal dist.
 is easy to use as our null dist.



"Estimate" vs. "Statistic" in R

- **Estimate** is the **observed sample statistic** (i.e., the numeric quantity calculated with the dataset)
 - Here, the dataset had a sample correlation coefficient of -0.398
- **Statistic** is the **standardized test statistic** (i.e., z-score or *t*-score)
 - Here, that sample statistic is 7.07 standard errors below what we'd expect if the null hypothesis were true (i.e., if there is no correlation between age and vitamin D levels)
 - Here, the standardized test statistic is a t-score that's distributed t(266)

```
## # A tibble: 1 x 8

## estimate statistic p.value parameter conf.low conf.high method alternative

## <dbl> <dbl> <dbl> <dbl> <chr> <chr> ## 1 -0.398 -7.07 6.89e-12 266 -1 -0.309 Pearson'~ less
```

A (Brief) Rundown on Linear Regression

- Linear regression: Models the linear relationship between numerical response variable (y) and explanatory variables (x), which can be either numerical or categorical
 - Simple linear regression has one explanatory variable
 - Multiple linear regression has multiple explanatory variables
- Multiple linear regression can be equal-slopes or varying-slopes
- $\hat{\mathbf{B}}_{\mathbf{k}}$ (coefficient of **predictor** $\mathbf{x}_{\mathbf{k}}$) is predicted mean change in \mathbf{y} corresponding to 1 unit change in $\mathbf{x}_{\mathbf{k}}$ when all other predictors are held constant
 - If x_k is **numerical**, think of **slope**
 - If x_k is categorical, think of difference in means (\bar{y}_{other} $\bar{y}_{baseline}$)

The General "Formulas" for Equal-Slopes (When x₂ Is Categorical)

- $\hat{\mathbf{B}}_{0}$ is y-intercept of line when $\mathbf{x}_{2} = \mathbf{0}$
 - Ex: For houses with central air $(x_2 = 0)$, when living area (x_i) equals 0, the price (\hat{y}) is \$42,595 (\hat{B}_0) , on average
- Since this is equal-slopes, $\hat{\mathbf{B}}_{1}$ is **slope of both lines** (a.k.a. increase in $\hat{\mathbf{y}}$ after 1-unit increase in \mathbf{x}_{1} , **controlling for \mathbf{x}_{2}**)
 - Ex: Controlling for central air (x_2) , as living area (x_1) increases by 1 unit, price (\hat{y}) increases by \$107 (\hat{B}_2) , on average
- $\hat{B}_0 + \hat{B}_2$ is y-intercept of line $x_2 = 1$, so $\underline{\hat{B}}_2$ is difference in \hat{y} between both lines $(\hat{y}_{other} \hat{y}_{baseline})$, controlling for x_1
 - Ex: Controlling for living area (x_1) , houses without central air $(x_2 = 0)$ cost \$28,451 (\hat{B}_2) less than houses with central air $(x_2 = 1)$, on average

The General "Formulas" for Varying-Slopes (When x₂ Is Categorical)

- $\hat{\mathbf{B}}_{\mathbf{0}}$ is y-intercept of line when $\mathbf{x}_2 = \mathbf{0}$
 - Ex: For houses with central air $(x_2 = 0)$, when living area (x_1) equals o, the price (\hat{y}) is -\$8,248 (\hat{B}_0) , on average
- $\hat{\mathbf{B}}_{1}$ is slope of line when $\mathbf{x}_{2} = \mathbf{0}$
 - Ex: For houses with central air $(x_2 = 0)$, as living area (x_1) increases by 1 unit, price (\hat{y}) increases by \$132 (\hat{B}_{γ}) , on average
- $\hat{B}_0 + \hat{B}_2$ is y-intercept of line when $x_2 = 1$ (houses without central air), so \hat{B}_2 is difference in y-intercepts between both lines ($b_{other} b_{baseline}$)
 - Ex: When living area (x_{γ}) equals o, houses without central air $(x_{2} = 1)$ cost \$53,226 (\hat{B}_{2}) more than houses with central air $(x_{3} = 0)$, on average
- $\hat{B}_1 + \hat{B}_3$ is slope of line when $x_2 = 1$ (houses without central air), so \hat{B}_3 is difference in slopes between both lines (m_{other} m_{baseline})
 - Ex: Houses without central air $(x_2 = 1)$ have a lower slope than houses with central air by \$44.6/unit (\hat{B}_q)

Inference with Linear Regression

- When <u>assumptions</u> are met, we can conduct **inference** to learn about **population parameters** (beta coefficients in **population model**)
 - Our **model** is constructed from **sample data**—i.e., we have \hat{B}_k , but we want to know about B_k !
- We can conduct a hypothesis test on a **slope term** (in **equal-slopes model**)
 - $\mathbf{H_o}$: $\mathbf{B_k}$ = \mathbf{o} (i.e., the slope is zero, so there is no association between $\mathbf{X_k}$ and Y after controlling for all other predictors in the model)
 - $\mathbf{H_A}$: $\mathbf{B_k} \neq \mathbf{o}$ (i.e., there is an association between $\mathbf{X_k}$ and Y after controlling for all other predictors in the model)
- Or on an interaction term (in varying-slopes model)
 - $\mathbf{H_o}$: $\mathbf{B_k}$ = \mathbf{o} (i.e., slope between Y and numerical expl. variable $\mathbf{X_i}$ doesn't differ by category)
 - $\mathbf{H_A}$: $\mathbf{B_k} \neq \mathbf{o}$ (i.e., slope between Y and numerical expl. variable $\mathbf{X_i}$ differs by category)

Advanced Inference Scenarios

- Recall we've expanded our toolkit and can handle more **advanced inference scenarios** (in addition to **inference with linear regression**)
- If we have a categorical variable with more than 2 categories...
 - We use **chi-squared** as our test when both response variable and explanatory variable are 2^+ categorical, χ^2 (**chi-squared**) as our test statistic
 - We use **ANOVA** as our test when **response variable** is **numerical** and **explanatory variable** is **2+ categorical**, with **F-statistic** as our test statistic
- If our dataset has **paired measurements** (i.e., each observation can be matched to another observation, like a person "before and after")...
 - We use a **paired** *t***-test**, with *t***-score** as our (standardized) test statistic

Let's Recap Our Inference Scenarios

https://drive.google.com/file/d/1rvVsTfhaK 92y Wn8DTp-f97SF3tPmkEr/view?usp=drive link

More on Inference and Linear Regression

- These are big topics, and for the sake of time, I couldn't possibly cover everything in an hour
- If you want more (in-depth) information, you can check out...
 - <u>Week 5 slides</u>, <u>Week 6 slides</u>, and <u>Week 9 slides</u> for inference
 - <u>Week 10 slides</u> and <u>Week 11 slides</u> for linear regression

Problem Solving Strategies and Common Mistakes

First, Load All Relevant Libraries

- library(tidyverse)
- library(infer)
- library(ggplot2)
- library(gglm)
- library(moderndive)
- library(dplyr)
- library(broom)
- library(knitr)
- There might be more I'm forgetting... it doesn't hurt to load more than you need!

When Should I Know to Calculate Power?

- Hint 1: The problem is about a hypothesis test
 - Ex: "Consider a scenario where at least 55% of voters must approve"
 - Here, we're interested in the population proportion of voters
- <u>Hint 2</u>: The problem gives you a SPECIFIC value for the alternative hypothesis (in addition to a null value)
 - Ex: "If 60% of U.S. adults actually think marijanua should be legal..."
 - H_o : p = 55%, H_A : p > 55% ($p \stackrel{?}{=} 60\%$)
- <u>Hint 3</u>: You want to "test" something about your hypothesis test (e.g., if there is a sufficient sample size)
 - Ex: "Would n = 400 be a reasonable sample size to demonstrate, with a one-sided test, that more than 55% of U.S. adults are in favor of legalization?"

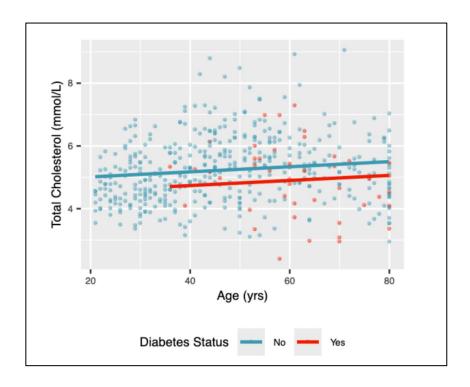
Can a Type I (or Type II) Error Occur?

- Recall the **definitions** and the **table of outcomes**
- <u>Type I Error</u>: Rejecting H_o when it's actually true (delusional scientist)
 - This can only occur if we reject the null hypothesis (i.e., our p-value is small)
- Type II Error: Failing to reject H_o when H_A is actually true (missed opportunity)
 - This can only occur if we FAIL to reject the null hypothesis (i.e., our p-value is large)

	We Reject H _o	We Fail to Reject H _o
H _o is true	Type I Error	Correct Decision 🙂
H _A is true	Correct Decision 😁	Type II Error

When Should I Use Equal-Slopes vs. Varying-Slopes?

- Consider your goal with the model (and what's being asked of you)
- With varying-slopes, certain questions (like the average difference in cholesterol between diabetic groups, controlling for age) can't be answered
- With equal-slopes, certain questions (like whether or not the relationship/slope differs between groups) can't be answered

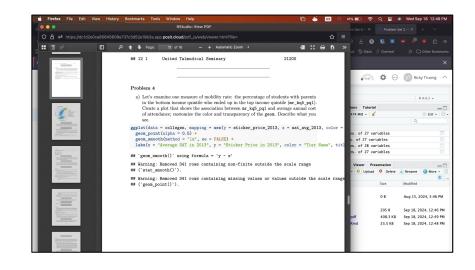


Debugging Code: Comment Out, Partial Credit

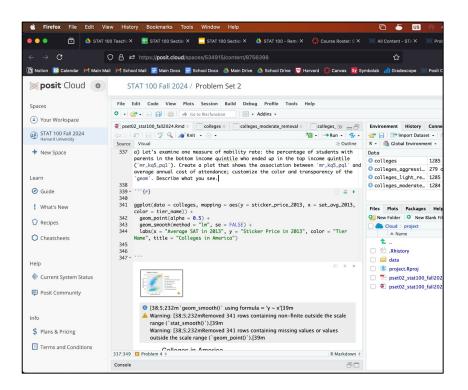
- To debug code, consider commenting out (#) the possibly-problematic lines
 - If the code runs without the line, you know it's the problem
 - R will often tell you which line(s) are causing an issue
- Do NOT delete all your code! You may get partial credit even if your code doesn't run
 - Either set eval = FALSE or comment out the code
 - To comment out, highlight a line and hit "Command" + "Shift" + "C"

Related, Your Code Should Be Readable!

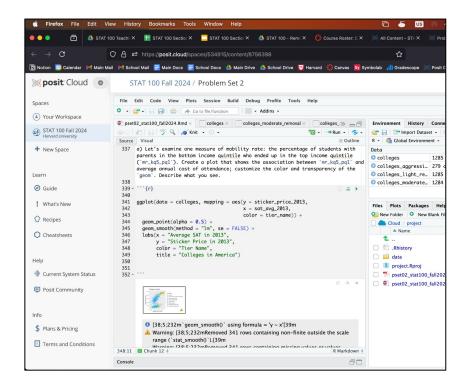
- Make sure your code isn't running off the screen in your PDF
 - If the grader can't read your code, you might get points off
- Hit "Return" to start a new line
 - Best to do this after commas (,) and plus signs (+)



Messy Code

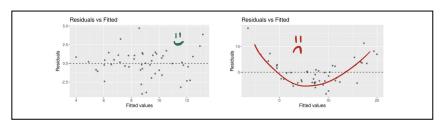


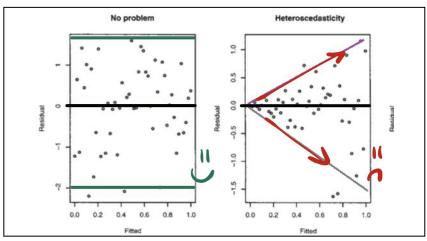
Clean Code



Assumptions for Linear Regression: Interpretations are Different

- Recall the <u>assumptions</u> to conduct inference with linear regression
 - This applies to **simple** and **multiple**
- #1 (Linearity) and #2 (Constant Variability) use residual plots,
 but their interpretations differ
 - For #1, cite the random scatterabout y = o
 - For #2, cite upper and lower bounds to show there is no "fanning"



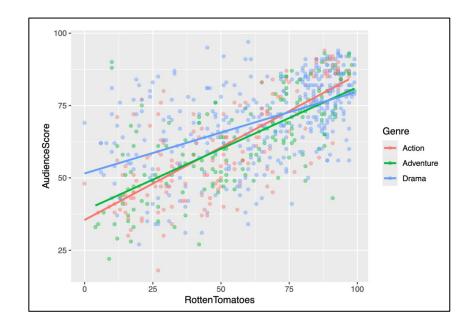


Interpreting the "Tibble" from Linear Regression

- Top to bottom, the **beta coefficients** are listed in **ascending order** starting at o
 - The top-most number is \hat{B}_{o} , the next one is \hat{B}_{i} , ...
- The baseline group is the opposite of the group shown
 - "centralAir: Yes" (a.k.a. houses WITH central air) is our **baseline group**
- Interaction term has 3 "things"
 (numerical variable, categorical variable, and category)
 - "livingArea: centralAirNo" is our interaction term

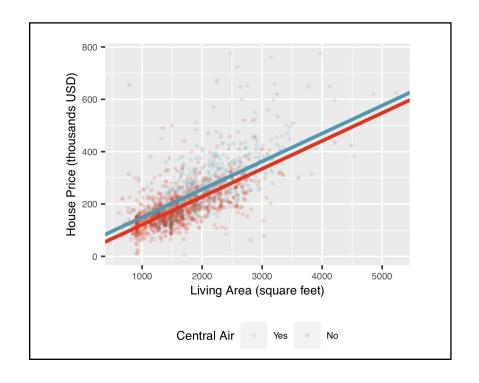
"Association" and "Relationship" Are Slope

- Association is another word for slope,
 which is the measure of the relationship
 between 2 numerical variables
 - Ex: "Assess whether there's evidence that in the population, the relationship between audience score and critic score differs between action movies and drama movies"
 - This is basically asking whether or not the slopes are different, which sounds like a varying-slopes model is needed (along with some inference)



Holding Everything Else Constant

- When interpreting the coefficients of an equal-slopes model, don't forget to mention that we're holding everything else constant
- We're controlling for the other **variable(s)**
 - We're "slicing" at some living area
 - Ex: "Controlling for living area, houses without central air cost \$28,451 less than houses with central air, on average"
 - We're "picking" one of the lines
 - Ex: "Controlling for central air, as living area increases by 1 unit, price increases by \$107, on average"



pnorm(), qnorm(), pt(), qt()...

- Want **probability**?
 - Use pnorm(), pt()
 - This is often done for **p-value** in **hypothesis testing**
- Want **quantile** (i.e. percentile)?
 - Use qnorm(), qt()
 - This is often done to find z* or t* (critical values) in confidence intervals

Tips for Oral Exam

Set a Timer!

- This is probably the best thing you can do for the Oral Exam
- 10 minutes goes by quickly, so use your time responsibly
- In general, try to spend around 3 minutes per question
 - There will be 3 questions, and each can have multiple parts

Don't Feel the Need to "Ramble"

- Say what you need to say to answer the question
 - Nothing less, nothing more
- If you feel like your answer is enough, move on
- If you have time at the end, you can go back to any questions to elaborate (or even change your answer)

Closing Remarks

- Thank you all very much for coming!
- Slack the teaching team if you have any questions
 - Slack me specifically with questions related to this slideshow (if you have any)
- The best thing you can do is practice
 - Consider going to the Practice Session tomorrow!
- Best of luck! You're all going to do amazing 😁