STAT 100: Week 11

Ricky's Section

Introductions and Attendance

Introduction: Name

<u>**Question of the Week**</u>: Thanksgiving is coming up! What's something you're grateful for?

Important Reminders

Anonymous Feedback

https://docs.google.com/forms/d/e/1FAIpQLSfKv FGvsoogm-IvtxKx3Vf6bBzSJE2jamK1gklAzL6Nk XE8w/viewform

Upcoming Events...

- Last section for STAT 100: Next week 🙁
- Last day of class for STAT 100: Wednesday, 12/4
- Final exam for STAT 100: Wednesday, 12/11
- **ggparty**: Thursday, 12/5 from 11:30 AM to 1:30 PM in Science Center 316
 - RSVP: https://forms.gle/yKw6Wziiy6Lj5guu6

Workshop (Review Session)

- Saturday, 11/16 from 4-5 PM in Science Center 309!
- We'll be practicing and reviewing linear regression
- We recognize flipped classroom can be difficult, so these are here to help you
 - Along with OH, 1-on-1 OH, Slack, etc.

Teaching Fellow (TF) Applications!

- https://forms.gle/PzgYrGFNasLejap37
 - The deadline is Monday, 11/18
- Let me know if you have any questions!
- I definitely encourage you all to apply! •

Content Review: Week 10

Let's (Quickly) Recap Linear Regression

- Linear regression: Models the linear relationship between numerical response variable (y) and explanatory variables (x), which can be either numerical or categorical
 - For now, we'll focus on **simple linear regression**, which only has one **explanatory variable**
- The form of this model is $\hat{y} = \hat{B}_0 + \hat{B}_1 x$
 - Note: \hat{B} is supposed to represent beta hat $(\beta + \hat{A})$
- The **coefficients** $(\hat{\mathbf{B}}_{0}$ and $\hat{\mathbf{B}}_{1})$ have different interpretations depending on whether x is **numerical** or **categorical**

Explanatory Variable: Numerical

- When x is **numerical...**
 - The model represents a "line of best fit"
 - $\hat{\mathbf{B}}_{\mathbf{0}}$ is the y-intercept
 - When price percentage equals 0%, the average win percentage is 42%
 - $\hat{\mathbf{B}}_{\mathbf{i}}$ is the slope
 - As price percentage increases by 1%, the win percentage increases by 0.178%, on average
 - Least-squares regression finds the optimal values of B
 ond B
 inds the minimizing residuals (errors)

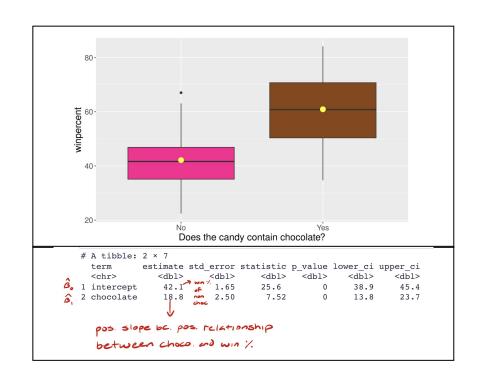


Explanatory Variable: Binary Categorical

- When x is **binary categorical**...
 - The model represents means (one for each of the two group)
 - $\hat{\mathbf{B}}_{\mathbf{o}}$ is the mean of y in the **baseline** group (when x = 0)
 - For candy without chocolate, the average win percentage is 42.1%
 - $\hat{\mathbf{B}}_{1}$ is the **difference in means** of **other group** from **baseline group**

$$(\bar{y}_{other} - \bar{y}_{baseline})$$

- Candy with chocolate has a higher average win percentage than candy without chocolate by 18.8%



Linear Regression: Code

- **Fitting the model**: Use this to build your model
 - MODEL <- Im(Y-VAR ~ X-VAR, data = DATASET)
 - model <- Im(winpercent ~ pricepercent, data = candy)
- <u>Getting the numbers</u>: Use this to summarize your model
 - get_regression_table(MODEL)
 - get_regression_table(model)
- **<u>Predicting</u>**: Use this for your model to predict y-value of new instances
 - predict(MODEL, newdata = data.frame(Y-VAR = VALUE))
 - predict(model, newdata = data.frame(pricepercent = 85))

Population Model vs. Estimated Model

- Population model: $y = B_0 + B_1 x + \epsilon$
 - ε is error/"random noise" around the line (population parameter for the residuals)
 - $\quad \epsilon \sim N(0, \sigma)$
 - B_o and B₁ are population parameters

- **Estimated model**: $\hat{\mathbf{y}} = \hat{\mathbf{B}}_{0} + \hat{\mathbf{B}}_{1}\mathbf{x}$
 - This is what our "line of best fit" is
 - $\hat{\mathbf{B}}_{0}$ and $\hat{\mathbf{B}}_{1}$ are estimates of the **population parameters**
 - ε "disappears" because the
 estimated model is a
 straight line

Content Review: Week 11

Introducing Multiple Linear Regression

- Multiple linear regression: Models the linear relationship between numerical response variable (y) and multiple explanatory variables (x₁, x₂, ..., x_D), which can be either numerical or categorical
- The form of this model is $\hat{\mathbf{y}} = \hat{\mathbf{B}}_{\mathbf{o}} + \hat{\mathbf{B}}_{\mathbf{i}} \mathbf{x}_{\mathbf{i}} + ... + \hat{\mathbf{B}}_{\mathbf{p}} \mathbf{x}_{\mathbf{p}}$
 - Note: \hat{B} is supposed to represent beta hat $(\beta + \hat{A})$
- $\hat{\mathbf{B}}_k$ (coefficient of **predictor** \mathbf{x}_k) is predicted mean change in **y** (**response** variable) corresponding to 1 unit change in \mathbf{x}_k when all other predictors are held constant
 - If x_k is **numerical**, think of slope
 - If x_k is **categorical**, think of difference in means (of group where $x_k = 1$ from baseline group)

For houses, if I want to predict price based on living area and whether or not there's central air, what is p (number of predictors)?

Question:

For houses, if I want to predict price based on living area and whether or not there's central air, what is p (number of predictors)? We'll use linear regression to model this relationship.

 $\hat{y} = price$

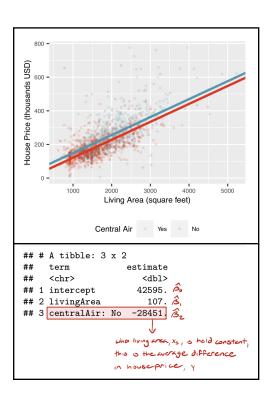
x₁ = living area (numerical)

x₂ = whether or not there's central air (categorical)

Thus, p = 2.

Example: Houses

- <u>Variables</u>: price (\hat{y}) , living area (x_1) , whether or not there's central air (x_2)
 - x_1 is numerical, x_2 is categorical
 - **Baseline group** is houses WITH central air
- **Estimated model**: $\hat{y} = \hat{B}_0 + \hat{B}_1 x_1 + \hat{B}_2 x_2$
 - <u>Line when $x_2 = o$ (houses WITH central</u> <u>air)</u>: $\hat{y} = \hat{B}_o + \hat{B}_i x_i$
 - \mathbf{y} -intercept = $\hat{\mathbf{B}}_{0}$, $\mathbf{slope} = \hat{\mathbf{B}}_{1}$
 - <u>Line when $x_2 = 1$ (houses WITHOUT</u> <u>central air</u>): $\hat{y} = (\hat{B}_0 + \hat{B}_2) + \hat{B}_1 x_1$
 - **y-intercept** = $\hat{B}_0 + \hat{B}_2$, **slope** = \hat{B}_1



Example: Houses

- <u>Variables</u>: price (\hat{y}) , living area (x_1) , whether or not there's central air (x_2)
 - x_1 is numerical, x_2 is categorical
 - **Baseline group** is houses WITH central air
- **Estimated model**: $\hat{y} = \hat{B}_0 + \hat{B}_1 x_1 + \hat{B}_2 x_2$
 - Line when $x_2 = 0$ (houses WITH central air): $\hat{y} = \hat{B}_0 + \hat{B}_1 x_1$
 - \mathbf{y} -intercept = $\hat{\mathbf{B}}_{0}$, slope = $\hat{\mathbf{B}}_{1}$
 - Line when $x_2 = 1$ (houses WITHOUT central air): $\hat{y} = (\hat{B}_0 + \hat{B}_2) + \hat{B}_1 x_1$
 - **y-intercept** = $\hat{B}_0 + \hat{B}_2$, **slope** = \hat{B}_1

- Since we have **multiple variables**, be careful interpreting the **coefficients**
 - $\hat{\mathbf{B}}_{o}$: For houses with central air $(\mathbf{x}_{2} = \mathbf{o})$, when living area (\mathbf{x}_{1}) equals o, the price $(\hat{\mathbf{y}})$ is \$42,595 $(\hat{\mathbf{B}}_{o})$, on average
 - <u>B</u>₁: Controlling for central air (x₂), as living area (x₁) increases by 1 unit, price (ŷ) increases by \$107 (B̂₁), on average
 - $\hat{\underline{B}}_2$: Controlling for **living area** (x_1) , **houses** without central air $(x_2 = 0)$ cost \$28,451 (\hat{B}_2) less than **houses with central air** $(x_2 = 1)$, on average

The General "Formulas" for Equal-Slopes (When x₂ Is Categorical)

- $\hat{\mathbf{B}}_{0}$ is y-intercept of line when $\mathbf{x}_{2} = \mathbf{0}$
 - Ex: For houses with central air $(x_2 = 0)$, when living area (x_j) equals 0, the price (\hat{y}) is \$42,595 (\hat{B}_0) , on average
- Since this is equal-slopes, $\hat{\mathbf{B}}_{1}$ is **slope of both lines** (a.k.a. increase in $\hat{\mathbf{y}}$ after 1-unit increase in \mathbf{x}_{1} , **controlling for \mathbf{x}_{2}**)
 - Ex: Controlling for central air (x_2) , as living area (x_1) increases by 1 unit, price (\hat{y}) increases by \$107 (\hat{B}_1) , on average
- $\hat{B}_0 + \hat{B}_2$ is y-intercept of line $x_2 = 1$, so $\underline{\hat{B}}_2$ is difference in \hat{y} between both lines $(\hat{y}_{other} \hat{y}_{baseline})$, controlling for x_1
 - Ex: Controlling for living area (x_1) , houses without central air $(x_2 = 0)$ cost \$28,451 (\hat{B}_2) less than houses with central air $(x_2 = 1)$, on average

Looking at the tibble, how can we tell what's the baseline group?

Question:

Looking at the tibble, how can we tell what's the baseline group?

Remember the **baseline group** is when $x_k = 0$ for some categorical predictor x_k .

Things are relative to the **baseline group**, so the tibble presents the "change" with the **categorical predictor** (to $x_k = 1$ from $x_k = 0$).

Thus, the **baseline group** is the OPPOSITE of the group shown.

Baseline Group

```
## # A tibble: 3 x 2
##
     term
                      estimate
                         <dbl>
##
     <chr>
                        42595.
   1 intercept
                          107. 3
     livingArea
## 3 centralAir: No
                      -28451.
                   who living area, x1, is held constant,
                   this is the workge difference
                   in houseprice, y
```

The output tells us "centralAir: No" has an estimate of -28,451. Thus, "centralAir: Yes" (a.k.a. houses WITH central air) is our baseline group.

Categorical Variables with 2+ Categories

- Linear regression can accommodate categorical variables with 2+ categories
 - Ex: We can predict RFFT score with the categorical variable of education, which can be "Lower Secondary," "Higher Secondary," or "University"
- When **x** is a **categorical variable** with k + 1 categories...
 - $\hat{\mathbf{B}}_{0}$ represents the **mean of y** in the **baseline group** (one of those k + 1 categories)
 - $\hat{\mathbf{B}}_{\mathbf{k}}$ represents the **difference in means**—specifically, going from $\mathbf{x} = \mathbf{o}$ (baseline group) to $\mathbf{x} = \mathbf{k}$ (one of the other groups)
 - Thus, $\hat{\mathbf{B}}_{\mathbf{k}} = \bar{\mathbf{y}}_{\text{group }\mathbf{k}} \bar{\mathbf{y}}_{\text{baseline}}$
- We can confirm our answers with some data wrangling
- Let's look at an example...

Interpreting a categorical predictor with several levels

$$\widehat{RFFT} = 40.9 + 14.8(Edu_{LS}) + 32.1(Edu_{HS}) + 45.0(Edu_{Univ})$$

- When x is a categorical variable with k+1 levels. . .
 - \diamond \hat{eta}_0 represents the mean of y in the baseline group
 - \Diamond $\hat{\beta}_k$ represents the difference in means; specifically, going from x = 0 to x = k
- Mean RFFT score is 40.9 points among those with at most a Primary education.
- The mean RFFT score among those with at most a University education is 45 points higher than those with at most a Primary education: 40.9 + 45 = 85.9 points.
- The Edu_new: Univ coefficient equals $\overline{y}_{Univ} \overline{y}_{Primarv} = 45$

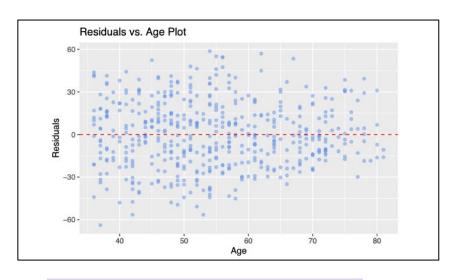
```
prevend.samp %>%
  group_by(Edu_new) %>%
  summarize(mean_RFFT = mean(RFFT))
## # A tibble: 4 x 2
     Edu new
##
                mean_RFFT
     <fct>
                     <dbl>
## 1 Primary
## 2 Lower Sec
## 3 Higher Sec
                      73.1
## 4 Univ
                      85.9
model <- lm(RFFT ~ Edu_new,
            data = prevend.samp)
get_regression_table(model) %>%
  select(term, estimate)
## # A tibble: 4 x 2
##
                          estimate : aff in means
     term
##
     <chr>
                             <dbl>
                          3. 40.9
     intercept
## 2 Edu_new: Lower Sec 3 - 14.8
## 3 Edu_new: Higher Sec 2 - 32.1
                         \hat{a}_3 = 45.0
## 4 Edu_new: Univ
```

Assumptions for (Multiple) Linear Regression

- <u>Linearity</u>: For each predictor variable x_k, the change in the predictor is linearly related to change in the response variable when the values of all other predictors are held constant
- <u>Constant Variability</u>: The **residuals** (errors) have approximately **constant** variance
- <u>Independence</u>: Each observation is **independent** (i.e., value of one observation provide no information about value of others)
- Normality: The residuals (errors) are approximately normally distributed

Assumption #1: Linearity

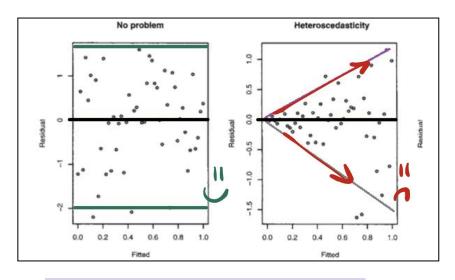
- Check via "residual vs. predictor" plot with ggplot()
 - For each **numerical predictor**, plot the **residuals** on the y-axis and the **predictor values** on the x-axis
- If data is linear, points should scatter from y = o randomly, with no pattern



- ggplot(MODEL, aes(y = .resid, x = NUM-PREDICTOR) + geom_point() + geom_hline(yintercept = 0)
- ggplot(mod_rfft, aes(y = .resid, x = Age)) + geom_point(alpha = 0.5, col = "cornflowerblue") + geom_hline(yintercept = 0, lty = 2, col = "red") + labs(y = "Residuals", x = "Age", title = "Residuals vs. Age Plot")

Assumption #2: Constant Variability

- Check via **residual plot**, which plots residuals of model across domain
- Vertical spread of points should be roughly constant across domain, with no "fanning"
 - This interpretation is different from **linearity**; here, cite the upper and lower bounds (in green) to show there is no "fanning"



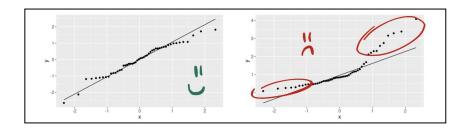
- ggplot(MODEL) + stat_fitted_resid()
- ggplot(model) + stat_fitted_resid(alpha = 0.25)

Assumption #3: Independence

- Check by considering how data was collected
- If there's **independence**, knowing observation #1 gives no information about observation #2
 - Ex: If data was randomly sampled, then independence can be reasonably assumed
 - Ex: If data was collected within a family (and we're measuring blood sugar, e.g.), then independence might not apply. Why?

Assumption #4: Normality

- Check via Q-Q plot, which plots residuals against theoretical quantiles of normal distribution
 - If residuals were perfectly normally distributed, they'd exactly follow the diagonal
 - We're not looking for perfect—just make sure it's reasonable
- Points should have a linear relationship, with no breaks at tails



- ggplot(MODEL) + stat_normal_qq()
- ggplot(model) + stat_normal_qq(alpha = 0.25)

Returning to Inference: Population Model vs. Estimated Model

- Population model: $y = B_0 + B_1 X_1 + ... + B_p X_p + \varepsilon$
 - ε is error/"random noise" around the line (population parameter for the residuals)
 - $\varepsilon \sim N(0, \sigma)$
 - **B**_k is population parameter

- **Estimated model**: $\hat{\mathbf{y}} = \hat{\mathbf{B}}_{0} + \hat{\mathbf{B}}_{1}\mathbf{x}_{1} + \dots + \hat{\mathbf{B}}_{p}\mathbf{x}_{p}$
 - This is what our "line of best fit" is
 - **B**_k is estimate of the population parameter
 - ε "disappears" because the
 estimated model is a
 straight line

Inference in (Multiple) Regression: Hypothesis Tests

- The **observed data** is assumed to have been **randomly sampled** from a population where the **explanatory variable** (X) and the **response variable** (Y) follow a **population model**
 - Population model: $Y = B_0 + B_1 X_1 + ... + B_p X_p + \varepsilon$
 - Like before, but we're now using capital letters to indicate **random variables**
 - **Estimated model**: $\hat{\mathbf{y}} = \hat{\mathbf{B}}_0 + \hat{\mathbf{B}}_1 \mathbf{x}_1 + \dots + \hat{\mathbf{B}}_p \mathbf{x}_p$
- Usually, we're concerned with **slope parameter** (B_k)
 - $\mathbf{H_o}$: $\mathbf{B_k}$ = \mathbf{o} (i.e., there is no association between $\mathbf{X_k}$ and Y after controlling for all other predictors in the model)
 - $\mathbf{H_A}$: $\mathbf{B_k} \neq \mathbf{o}$ (i.e., there is an association between $\mathbf{X_k}$ and Y after controlling for all other predictors in the model)

Inference in (Multiple) Regression: Hypothesis Tests

When assumptions are met (including 4 assumptions for multiple linear regression), then the *t*-statistic follows a *t*-distribution with degrees of freedom n − p − 1, where n is the number of cases and p is the number of predictors

```
    t = (B̂<sub>k</sub> - B<sub>k</sub><sup>o</sup>)/SE(B̂<sub>k</sub>)
    Recall our null hypothesis is (often) B<sub>k</sub> = o, so the B<sub>k</sub><sup>o</sup> term can go away
    t = (B̂<sub>k</sub>)/SE(B̂<sub>k</sub>)
```

- Our computers can calculate this for us!
 - get_regression_table(MODEL)
 - get_regression_table(model)

Inference in (Multiple) Regression: Confidence Intervals

- Confidence interval: Recall the form of a confidence interval is CI = sample statistic ± ME
- $-\mathbf{CI} = \mathbf{\hat{B}}_{\mathbf{k}} \pm (\mathbf{t} \times \mathbf{SE}(\mathbf{\hat{B}}_{\mathbf{k}}))$
 - t^* is the point on a *t*-distribution with n-p-1 degrees of freedom and $\alpha/2$ area to the right
 - "With {<u>α</u>}% confidence, an increase in {<u>explanatory variable</u>} by 1 unit is associated with a change in average {<u>response variable</u>} between {<u>lower bound</u>} and {<u>upper bound</u>} units when holding {<u>other explanatory variables in model</u>} constant."
 - Ex: With 95% confidence, statin users have an average RFFT score that is between 4.2 points lower to 5.9 points higher than non statin users when holding age constant. Here, x_k is categorical, so this is better interpreted as a difference in means.
- Again, our computers can calculate this for us (use get_regression_table())!

Confidence Interval vs. Prediction Interval

- Confidence interval for mean response: Tries to find plausible range for parameter
 - Centered at \hat{y} , with smaller SE
 - Ex: We are 95% confident that the average price of 20 year-old, 1,500 square-feet Saratoga houses with central air and 2 bathrooms is between \$199,919 and \$211,834

- Prediction interval for individual response: Tries to find plausible range for a single, new observation
 - Centered at $\hat{\mathbf{y}}$, with larger SE
 - Ex: For a 20 year-old, 1,500 square-foot Saratoga house with central air and 2 bathrooms, we predict, with 95% confidence, the price will be between \$73,885 and \$337,869

Confidence Interval vs. Prediction Interval: Code

- OBSERVATION-OF-INTEREST <data.frame(EXPL-VAR(S) = VALUE(S))
- predict(MODEL, newdata =
 OBSERVATION-OF-INTEREST, interval =
 "confidence", level = CONF-LEVEL)
 - house_of_interest <- data.frame(livingArea = 1500, age = 20, bathrooms = 2, centralAir = "yes")
 - predict(model, house_of_interest, interval = "confidence", level = 0.95)

- OBSERVATION-OF-INTEREST <data.frame(EXPL-VAR(S) = VALUE(S))
- predict(MODEL, newdata =
 OBSERVATION-OF-INTEREST, interval =
 "prediction", level = CONF-LEVEL)
 - house_of_interest <- data.frame(livingArea = 1500, age = 20, bathrooms = 2, centralAir = "yes")
 - predict(model, house_of_interest, interval =
 "prediction", level = 0.95)

Two Types of Mult. Linear Regression: Equal-Slopes, Varying-Slopes

- Equal-Slopes: Assumes change in y
 associated with change in 1 explanatory
 variable—a.k.a. the slope—DOES NOT
 DEPEND on other explanatory variable(s)
 in model
 - Visually, we see equal slopes in the lines
- Estimated model: $\hat{y} = \hat{B}_0 + \hat{B}_1 x_1 + \hat{B}_2 x_2 + ... + \hat{B}_p x_p$
 - We see there are no terms where the x variables interact with each other
- Code: $<- Im(- \sim + -, data = -)$

- Varying-slopes model: Assumes change in y associated with change in 1 explanatory variable—a.k.a. the slope—DOES DEPEND on other explanatory variable(s) in model, so interaction term(s) is present
 - Visually, we see different slopes in the lines
- **Estimated model**: $\hat{y} = \hat{B}_0 + \hat{B}_1 x_1 + \hat{B}_2 x_2 + \hat{B}_3 x_1 x_2 + ... + \hat{B}_p x_p$
 - We see there is an interaction term between x₁ and x₂: **B**₃x₁x₂
- Code: $<- Im(- \sim * -, data = -)$

For houses, if I want to predict price based on living area and whether or not there's central air—now with a varying slopes model—what is p (number of predictors)?

Question:

For houses, if I want to predict price based on living area and whether or not there's central air—now with a varying slopes model—what is p (number of predictors)?

We'll use linear regression (with varying-slopes) to model this relationship.

 $\hat{y} = price$

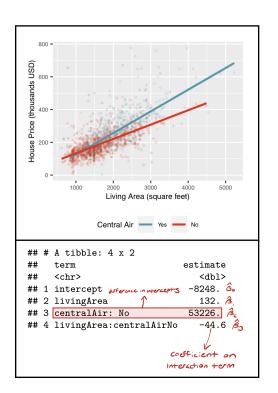
x, = living area (numerical)

x₂ = whether or not there's central air (categorical)

Thus, p = 2—like last time!

Example: Houses (But with Varying-Slopes)

- <u>Variables</u>: price (\hat{y}) , living area (x_1) , whether or not there's central air (x_2)
 - x_1 is numerical, x_2 is categorical
 - **Baseline group** is houses WITH central air
- **Estimated model**: $\hat{y} = \hat{B}_0 + \hat{B}_1 x_1 + \hat{B}_2 x_2 + \hat{B}_3 x_1 x_2$
 - <u>Line when $x_2 = o$ (houses WITH central</u> <u>air)</u>: $\hat{y} = \hat{B}_0 + \hat{B}_1 x_1$
 - y-intercept = \hat{B}_0 , slope = \hat{B}_1
 - Line when $x_2 = 1$ (houses WITHOUT central air): $\hat{y} = (\hat{B}_0 + \hat{B}_2) + (\hat{B}_1 + \hat{B}_3)x_1$
 - **y-intercept** = $\hat{B}_0 + \hat{B}_2$, **slope** = $\hat{B}_1 + \hat{B}_3$
 - Notice the **slopes** are different!



Example: Houses (But with Varying-Slopes)

- <u>Variables</u>: price (\hat{y}) , living area (x_1) , whether or not there's central air (x_2)
 - x_1 is numerical, x_2 is categorical
 - **Baseline group** is houses WITH central air
- **Estimated model**: $\hat{y} = \hat{B}_0 + \hat{B}_1 x_1 + \hat{B}_2 x_2 + \hat{B}_3 x_1 x_2$
 - Line when $x_2 = 0$ (houses WITH central air): $\hat{y} = \hat{B}_0 + \hat{B}_1 x_1$
 - y-intercept = \hat{B}_0 , slope = \hat{B}_1
 - <u>Line when $x_2 = 1$ (houses WITHOUT</u> <u>central air)</u>: $\hat{y} = (\hat{B}_0 + \hat{B}_2) + (\hat{B}_1 + \hat{B}_3)x_1$
 - **y-intercept** = $\hat{B}_0 + \hat{B}_2$, **slope** = $\hat{B}_1 + \hat{B}_3$
 - Notice the **slopes** are different!

- $\hat{\mathbf{B}}_{\mathbf{o}}$: For **houses with central air** $(\mathbf{x}_2 = \mathbf{o})$, when **living area** (\mathbf{x}_1) equals 0, the **price** $(\hat{\mathbf{y}})$ is -\$8,248 $(\hat{\mathbf{B}}_{\mathbf{o}})$, on average
- $\hat{\mathbf{B}}_{1}$: For houses with central air $(\mathbf{x}_{2} = \mathbf{o})$, as living area (\mathbf{x}_{1}) increases by 1 unit, price $(\hat{\mathbf{y}})$ increases by \$132 $(\hat{\mathbf{B}}_{1})$, on average
- $\hat{\mathbf{B}}_{2}$: When living area (\mathbf{x}_{1}) equals 0, houses without central air $(\mathbf{x}_{2} = 1)$ cost \$53,226 $(\hat{\mathbf{B}}_{2})$ more than houses with central air $(\mathbf{x}_{3} = 0)$, on average
- B
 3: Houses without central air (x
 2 = 1) have a lower slope than houses with central air by \$44.6/unit (B
 3). For houses without central air (x
 2 = 1), as living area (x
 1) increases by 1 unit, price (ŷ) increases by \$87.4 (B
 1 B
 2), on average

The General "Formulas" for Varying-Slopes (When x₂ Is Categorical)

- $\hat{\mathbf{B}}_{\mathbf{0}}$ is y-intercept of line when $\mathbf{x}_2 = \mathbf{0}$
 - Ex: For houses with central air $(x_2 = 0)$, when living area (x_1) equals x_2 , the price (\hat{y}) is -\$8,248 (\hat{B}_{0}) , on average
- $\hat{\mathbf{B}}_1$ is slope of line when $\mathbf{x}_2 = \mathbf{0}$
 - Ex: For houses with central air $(x_2 = 0)$, as living area (x_1) increases by 1 unit, price (\hat{y}) increases by \$132 (\hat{B}_{γ}) , on average
- $\hat{B}_0 + \hat{B}_2$ is y-intercept of line when $x_2 = 1$ (houses without central air), so \hat{B}_2 is difference in y-intercepts between both lines ($b_{other} b_{baseline}$)
 - Ex: When living area (x_1) equals o, houses without central air $(x_2 = 1)$ cost \$53,226 (\hat{B}_2) more than houses with central air $(x_2 = 0)$, on average
- $\hat{B}_1 + \hat{B}_3$ is slope of line when $x_2 = 1$ (houses without central air), so \hat{B}_3 is difference in slopes between both lines (m_{other} m_{baseline})
 - Ex: Houses without central air $(x_2 = 1)$ have a lower slope than houses with central air by \$44.6/unit (\hat{B}_q)

Inference with Varying-Slopes

- Same idea as before, but now we can infer about population interaction coefficient (B₃) instead of population slope coefficient (B₁)
 - H_0 : B_3 = o (i.e., association/slope between y and x_1 doesn't differ by category)
 - H_A : $B_3 \neq 0$ (i.e., association/slope between y and x_1 differs by category)
- Again, our computers give us this info with get_regression_table()!

Inference with interaction

- Do our observed data suggest that the association between total cholesterol and age differs by diabetic status in the population?
- Conduct a hypothesis test for the slope of the interaction term, $H_0: \beta_3 = 0$ vs. $H_0: \beta_3 \neq 0$
- If the population-level association between total cholesterol and age were the same between diabetics and non-diabetics, there would only be a 0.019 probability of observing a difference in slopes of -0.032 or larger in magnitude.
- With 95% confidence, the average change in total cholesterol per 1 year increase in age for diabetics is between 0.005 to 0.06 units smaller than for non-diabetics.

```
get_regression_table(mod_chol_int) %>%
  select(term, estimate, p_value)
## # A tibble: 4 x 3
##
    term
                     estimate p_value
##
    <chr>
                        <dbl>
                                <dbl>
## 1 intercept
                        4.77
                                0
                        0.01
                                0.001
## 2 Age
## 3 Diabetes: Yes
                        1.54
                                0.074
## 4 Age:DiabetesYes
                       -0.032
                                0.019
get_regression_table(mod_chol_int) %>%
  select(term, estimate, lower_ci, upper_ci)
## # A tibble: 4 x 4
##
                     estimate lower_ci upper_ci
     term
##
     <chr>
                        <dbl>
                                 <dbl>
                                          <dbl>
## 1 intercept
                        4.77
                                 4.47
                                          5.06
## 2 Age
                        0.01
                                 0.004
                                          0.016
## 3 Diabetes: Yes
                        1.54
                                -0.149
                                          3.22
## 4 Age:DiabetesYes
                       -0.032
                                -0.06
                                         -0.005
```

When should I use equal-slopes VS. varying-slopes?

Question:

When should I use equal-slopes vs. varying-slopes?

Consider your goal with the model.

With varying-slopes, certain questions (like the average difference in cholesterol between diabetic groups, controlling for age) can't be answered.

With equal-slopes, certain questions (like whether or not the relationship/slope differs between groups) can't be answered.

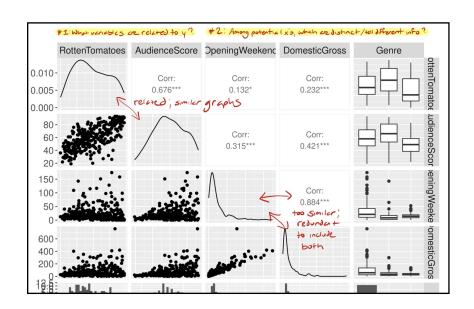
46

r²: Coefficient of Determination

- <u>r</u>²: Percent of **total variation** in y (**response variable**) explained by the **model**
 - $\mathbf{r}^2 = (\mathbf{r})^2 = Var(\hat{\mathbf{y}}_i)/Var(\mathbf{y}_i)$
 - If the **linear model** perfectly captured the **variability** in the observed data, then $Var(\hat{y}_i) = Var(y_i)$; thus, \mathbf{r}^2 would be 1
 - If **r**² is too low, try different model; however, **r**² only increases as new **predictors** are added to a model
- <u>adj(r²)</u>: Value of r² adjusted for size of model (penalizes too-large models)
 - $adj(r^2) = r^2 \times ((n-1)/(n-p-1))$
 - n is sample size, p is number of predictors in model
- Basically, graph your data and pick the model with **highest adj(r²)**
 - glance(MODEL)
 - glance(model)

Model Building Guidance

- In addition to looking at **adj(r²)**, consider your **explanatory variables** in the **model**
 - You want them to **explain different** aspects of the response variable
 - It would be redundant to have both RottenTomatoes and AudienceScore in a model, for example
- Use ggpair() to see relationship between multiple explanatory variables
 - If the graphs look alike, this tells you the variables are similar—consider removing one of them



Questions?

P-Set 8

Have a great rest of your week!